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Abstract

Let G be a finite group. An ordinary character of G is the character of a repre-
sentation of G over a field of characteristic 0. In the p-modular representation theory
of G,where p is a prime dividing the order of G, the ordinary irreducible characters
of G are divided into disjoint sets called p-blocks which reflect the decomposition of
the group algebra of G over a field of characteristic p into indecomposable two-sided
ideals. An important problem is to classify the p-blocks, and a first step is to count
the number of ordinary characters in a block.

The aim of Dade’s Ordinary Conjecture (DOC) is to prove an alternating sum
of the form ∑

C/G

(−1)|C|k(NG(C), B, d) = 0, ∀d ≥ 0

which counts the number of characters in B in terms of corresponding numbers
in subgroups of G which are normalizers of chains of certain p-subgroups of G.

This has been shown for p-blocks, p dividing q, for GLn(q) , SLn(q) and Un(q).
We prove DOC for SUn(q). The main difficulties involved arise because the struc-
ture of the unitary groups is more complicated than that of the linear groups. In
particular the cancellations in the alternating sum in the unitary case are very dif-
ferent from the cancellations that occur in the general linear case. A key result is
that a version of Ku’s parametrization of characters for Un(q) survives restriction
to SUn(q).

This report is devoted firstly to some background and context for DOC for the
finite special unitary groups. Then several reductions of the main alternating sum
are completed resulting in an important reformulation of the main theorem. The
alternating sum in this theorem is then immediately decomposed into two sub alter-
nating sums. The final aim of this paper is to prove the first of these sub alternating
sums, the so-called Levi sum.
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1 Introduction

Let G be a finite group. An ordinary representation of G is a group homomorphism

ρ : G −→ GL(V )

where V is a finite dimensional vector space over a field K of characteristic zero. Then
V is the G-module, or KG-module, afforded by ρ. If we fix a basis for V , then GL(V )
is isomorphic to GLn(K). Then the degree of the representation ρ is n. We define the
character χ of ρ by χ(g) = Tr(ρ(g)). In general, though we may consider K to be the
field of complex numbers, in practice we may take K to be a sufficiently large extension
of Q. A character χ is irreducible if the associated vector space V afforded by ρ has
no proper nonzero KG-submodules. We will denote the ordinary irreducible characters
of G by Irr(G). The set Irr(G) forms an orthonormal basis for the K-space of class
functions on G.

Throughout this paper we assume that p is a fixed prime number. A modular repre-
sentation of G is defined similarly, the key difference being that the module afforded is
a vector space over a field of characteristic p. A modular representation of G is a group
homomorphism

ρ : G −→ GL(W )

where W is a vector space over a field k of characteristic p. Then W is the G-module,
or kG-module, afforded by ρ. Restricting our attention to the elements of G with order
prime to p, we may define a so called Brauer character, a complex valued class function
on elements with order prime to p.

The philosophy of modular representations goes back to Brauer and in part relates
“global information” to “p-local information”. By global we mean the group G, and
by p-local we mean subgroups related to p-subgroups of G, for example normalizers of
p-subgroups. Information can refer to a variety of things including numbers of characters
or character values.

Modular representations of G give rise to a partition of Irr(G) into blocks. Dade’s
Conjecture was first presented in a series of papers entitled Counting Characters in
Blocks. The interplay between global and local blocks is informative in both directions.
The conjecture involves an alternating sum involving characters of p-local subgroups. In
order to state Dade’s fairly elaborate conjecture we must first assemble some concepts.

1.1 Modular Representations

Let K be an algebraic number field, a splitting field for G and its subgroups. Let O be
the ring of algebraic integers in K. Let P be a prime ideal in O containing p. Let R
be the ring of P-integral elements of K, i.e. the localization of O at P. Let πR be the
unique maximal ideal in R with respect to a valuation associated with the prime ideal
P. We define k to be the residue field R/πR which is isomorphic to O/P. Then k has
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characteristic p. The triple (K,R, k) is called a p-modular system. We may look at the
following group algebras: KG, RG, and kG.

We use RG in order to pass from ordinary to p-modular representations of G. As an
R-module, the R-algebra RG is free and of finite rank. We have

KG = K ⊗R RG and

kG = k ⊗R RG = RG /πRG .

A finitely generated R-free RG-module is called an RG-lattice. If V is a KG-module
then there exists an RG-lattice M with

K ⊗RM ∼= V.

Note that this is not unique as it depends on our choice of basis for V . Set

M̄ = k ⊗RM = M/πM as kG-module.

Then M̄ is a modular representation, or module, of G. The composition factors of M̄
are unique up to isomorphism and do not depend on the choice of M .

The K-algebra KG is semi-simple and thus completely reducible. However kG is not
semi-simple if p | |G|. Rather it can only be written as a sum of indecomposable two
sided ideals. These indecomposable subalgebras of kG are called the p-blocks of kG. A
decomposition of kG into blocks

kG = B1 ⊕B2 ⊕ · · · ⊕Bs

corresponds to a decomposition of the identity 1 = e1 + e2 + · · · + es where the ei are
orthogonal primitive central idempotents in kG. This is given by Bi = eikG. The class
sums of elements in G form a basis for both Z(RG) and Z(kG). Hence reducing mod
πR is a surjective map Z(RG) −→ Z(kG). We may lift the ei to orthogonal primitive
central idempotents fi in RG. Then the decomposition 1 = f1 + f2 + · · · + fs in RG
corresponds to a decomposition of RG into two sided ideals also called the p-blocks of
RG.

RG = B̂1 ⊕ B̂2 ⊕ · · · ⊕ B̂s
where B̂i = fiRG and Bi = k ⊗R B̂i.

If V is an irreducible KG-modules then fiV = V for a unique fi and fjV = 0 for all
j 6= i. We say that V belongs to the block B = fiKG. If V affords the character χ, we
also say that χ is in B. This gives rise to a partition of the set of ordinary characters of
G into blocks. We may informally think of a p-block B of G as simultaneously being all
of the following related objects:

• an indecomposable two-sided ideal kG-module eikG for primitive idempotent ei ∈
Z(kG)

4



• an indecomposable two-sided ideal RG-modulefiRG for primitive idempotent fi ∈
Z(RG) where fi is the lift of ei.

• the set of irreducible KG-modules V for which fiV = V

• the set of ordinary characters of the KG-modules V as above

The two-sided ideal summands of kG (or RG) are the same as the direct summands
of kG (or RG) as a k(G×G) (or R(G×G)) -module where the action of k(G×G) (or
R(G×G)) on kG (or RG) is given by (g1, g2) · g = g1gg

−1
2 .

Let B be a p-block of G. Then B has associated to it a p-group D called a defect
group of B and a non-negative integer called the defect of B. The subgroup D is a
minimal subgroup of G such that every B-module is a direct summand of an induced
module from D ([18], p. 122). If D is such a defect group and |D| = pd then B has
defect d. We define the defect of a character χ to be the maximum power of p dividing
|G|
χ(1)

. Clearly, the defect of a character is inversely related to the power of the p-part

of its degree. If B has defect d, then B contains a character of defect d and the defect
of all other characters in B is less than or equal to d. We have two extremes. Write
|G| = pem where p - m. If B contains a linear character then the defect of B is e. In
this case we say B has full defect. For example the block containing the trivial module
K, equivalently containing the trivial character, is called the principal block and has full
defect. If B contains a character of degree divisible by pe, then B has zero defect. It
turns out that a block B of defect zero contains exactly one character ([6], Proposition
56.31).

Brauer’s First Main Theorem states that if D is a p-subgroup of G then there exists
a bijection between blocks B of G with defect group D and blocks b of NG(D) with
defect group D. Let H ≤ G satisfy DCG(D) ≤ H ≤ NG(D). Let B be a block of G and
b be a block of H. We say b induces to B and write bG = B if b, as a k(H ×H)-module,
is a summand in the restriction BH×H of the k(G×G)-module B to H ×H and that B
is the only block for which this holds ([1], p.). For H as above, bG is always defined.

1.2 Statement of Dade’s Ordinary Conjecture

Let G be a finite group and p a prime. Given a chain of p-subgroups C : U0 < U1 <
· · · < Ul in G we define the length of C, |C| = l. We say that C is radical if U0 = Op(G),
the maximal normal p-subgroup of G and Ui = Op(∩ij=0NG(Uj)) for 1 ≤ i ≤ l. Let

NG(C) denote ∩lj=0NG(Uj). Observe that if two chains C1 and C2 are conjugate to one

another, then NG(C1) ∼= NG(C2). If b is a p-block of NG(C), then bG = B is defined.
Let

Irr(NG(C), B, d) =
{
ψ ∈ Irr(NG(C)) | ψ ∈ b where bG = B and ψ has defect d

}
.

We will set k(NG(C), B, d) = |Irr(NG(C), B, d)|.
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Conjecture 1.1 Dade’s Ordinary Conjecture (DOC) ([7], Conjecture 6.3). Let
G be a finite group with Op(G) = 1 so that all radical chains in G begin with the trivial
group U0 = 1. Let B be a block of G of nonzero defect. Then the following holds:

′∑
(−1)|C|k(NG(C), B, d) = 0, ∀d ≥ 0

where |C| = l is the length of C and
∑′ indicates the sum over a set of representatives

of conjugacy classes of radical chains in G.

1.3 Refinement of DOC for Certain Finite Reductive Groups

DOC reduces nicely for certain finite reductive groups in the defining characteristic. Let
G be a finite reductive group of characteristic p. Then G is the group of fixed points of
a Frobenius endomorphism of a connected reductive algebraic group. We consider the
p-blocks of G. Let I be an index set for the distinguished generators of the Weyl group
W of G. Let B be a Borel subgroup of G. In this paper PJ will denote the parabolic
subgroup BWI\JB. For example, PI = B is the Borel subgroup of G (rather than P∅).
It is also useful to think of parabolics indexed in the following way: If {Pj | j ∈ I} is a
complete set of maximal parabolic subgroups in G, then

PJ =
⋂
j∈J

Pj .

Let C : U0 < U1 < · · · < Ul be a radical chain of p-subgroups in G. Then
U0 = Op(G) = 1. Moreover, U1 = Op(NG(U1)) and hence, by ([3], Corollary), U1

must be the unipotent radical UJ of a parabolic subgroup PJ of G with NG(UJ) = PJ .
We have the familiar Levi decomposition PJ = LJUJ . It is obvious that U1 ⊆ B. Notice
that PJ/UJ ∼= LJ is itself a finite group of Lie type with Borel subgroup isomorphic to
B∩LJ . The quotient U2/UJ is isomorphic to a p-group of B∩LJ and hence is isomorphic
to a unipotent radical of a parabolic subgroup of LJ . Since U2 = Op(PJ ∩ NG(U2)) =
Op(NPJ

(U2)), we must have U2 = UJ ′ where J ′ ⊃ J . Hence C is a chain of unipotent rad-
icals and NG(C) is equal to NG(Ul) the normalizer of the last term so that NG(C) = PJ
for suitable J depending only on the last term of the chain C.

It turns out that there is considerable cancellation amongst the G-conjugacy classes
of chains of unipotent radicals for G. The collection of all such chains C which terminate
with a fixed UJ and thus have NG(C) = PJ cancels almost entirely, due to the alternating
parity of the involved chains. One uncancelled chain remains of maximal length J . By
a standard argument ([13], p.58),∑

C

(−1)|C|k(NG(C), B, d) =
∑
J⊆I

(−1)|J |k(PJ , B, d)

where the sum on the left is taken over a set of representatives of G-conjugacy classes
of chains of unipotent radicals.
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The possible defect of p-blocks is well known for finite groups of Lie type, otherwise
known as finite reductive groups, of characteristic p ([12]). The only possibilities are
blocks of zero defect and blocks of full defect. In Humphreys’ concluding remarks he
notes that the number of blocks of zero defect is equal to the index of the derived sub-
group G′ in G and that the number of block of full defect is equal to the order of the
center of G.

Let us now restrict our attention to G = GLn(q), n(q), Un(q), or SUn(q), where q
is a power of p. In fact we have a bijection from the set of p-blocks of PJ to the set
of p-blocks of G of full defect. Indeed, the center of G is a torus and hence has order
prime to p. Hence Op′(Z(G)) = Z(G) and Op(Z(G)) = 1. Let Z(G) = Z. The group Z
centralizes UJ so UJZ ⊆ UJCG(UJ) certainly holds. It happens that UJCG(UJ) ⊆ UJZ
holds for these four families of groups. Thus by ([15], Lemma 2.1), ψ and ψ′ lie in the
same block b of PJ if and only if their restrictions to Z have the same constituent. In
other words, PJ has |Z| blocks and a block b of PJ is determined by a unique character
ρ ∈ Irr(Z). The induced block bG = B is defined. B has full defect and is determined by
the same ρ. The proof for Un(q) is analogous to the proof for GLn(q) in ([15], Lemma
2.1). If ψ ∈ Irr(PJ) restricted to Z contains ρ we will say that ψ lies over ρ.

Write |G| = pem. Each parabolic subgroup PJ contains UI the unipotent radical of
the Borel subgroup of G. This is a Sylow p-subgroup of G. Hence |PJ | is divisible by
pe for every J ⊆ I. As noted above the defect of a character is inversely related to the
power of p dividing its degree. If the p-part of ψ(1) is pa for ψ ∈ Irr(PJ), then the defect
of ψ is e−a. Hence it is equivalent to count characters by their so called p-height rather
than their defect.

Definition 1.2 We define the p-height of ψ to be d if pd‖ψ(1). Similarly, we define the
q-height ψ to be d if qd‖ψ(1).

Remark: This definition is not entirely standard. In the literature p-height is gen-
erally defined with reference to the defect of the block containing the character. For
example Brauer’s definition of height in his Height Conjecture is more standard. How-
ever if ψ is in a block of full defect, then the p-height as it is usually defined is equal
to the maximal power of p dividing ψ(1) and hence our definition coincides with the
standard.

Let ρ be an irreducible character of the center of G and define

kd(PJ , ρ) =
∣∣∣{ψ ∈ Irr(PJ) |ψ lies over ρ and pd‖ψ(1)

}∣∣∣ .
Then DOC is equivalent to the following:

Conjecture 1.3 Let q = pa. Let G = GLn(q), n(q), Un(q), or SUn(q), with parabolic
subgroups PJ indexed by subsets J ⊆ I. Let Z be the center of G. Let |G| = pem where
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p - m. Then ∀ρ ∈ Irr(Z)∑
J⊆I

(−1)|J |kd(PJ , ρ) = 0 ∀d , 0 ≤ d < e.

If G is either of GLn(q) or Un(q), then the p part of the degree of characters in Irr(G)
are powers of q. Indeed, this is well known for GLn(q) and follows for Un(q) by replacing
q in the GLn(q)-character theory by −q in the Un(q)-theory, by Ennola’s Conjecture,
now proved. For G = GLn(q), or Un(q), let S =n (q), or SUn(q) respectively. The group
S is the kernel of the determinant map on G. Moreover the quotient G/S is cyclic of
order q − 1 or q + 1 respectively, in either case prime to p. Take any ψ ∈ Irr(S), then
there exists χ ∈ Irr(G) such that ψ is a constituent of the restriction of χ to S. By
Frobenius reciprocity, we may choose any irreducible χ appearing in the induction of ψ
from S to G. Then, by Theorem 2.12 and Lemma 2.15 in the next section,

χ|S = ψ1 + ψ2 + · · ·+ ψr where the ψi ∈ Irr(S) are G-conjugates of ψ

and r divides |G/S|. Thus

χ(1) = ψ1(1) + ψ2(1) + · · ·+ ψr(1).

Since r is prime to p, it follows from Clifford theory that the p-height of ψ is equal to the
p-height of χ and hence is also a power of q. Suppose χ ∈ Irr(G), or Irr(S) has p-height
d. Then d is certainly divisible by a so χ has q-height d/a. It turns out that from Olsson
and Uno’s construction for GLn(q2) and Ku’s construction for Un(q) the characters of
parabolic subgroups of G also have degrees with p part equal to a power of q. As we
will see in section 4, parabolic subgroups of S are in fact the kernel of the determinant
map restricted to parabolic subgroups of G. Thus, by the same reasoning as above, they
also have degrees with p part equal to a power of q. Hence in statement 1.3 of DOC,
for d not divisible by a the left hand side of the sum is empty and so vacuously true.
This allows us to simplify our notation by counting characters via q-height rather than
p-height. Henceforth and for the rest of this thesis we redefine the subscript d so that
it indicates q-height so for example Irrd(PJ , ρ) will denote irreducible characters of PJ
lying over ρ with q-height d.

1.4 Some Results for Dade’s Conjecture and Implications

We summarize the cases for which some version of Dade’s Conjecture has been shown,
including the result of this paper (and its successor, Dade’s Ordinary Conjecture for the
Finite Special Unitary Groups: Part II ). References for this section are ([11], Section 5)
and on the web at ([16]).
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1. Classical Groups:

GLn(q) ord., p | q Olssen, Uno
Un(q) ord., p | q Ku
GLn(q), Un(q) invar., p - q An
Sp2n(q), SO±m(q) ord., p - q, p, q odd An
L2 final Dade
L3 final, p | q Dade
Ln ord., p | q Sukizaki
Sp4(2n) final, p = 2 An, Himstedt, Huang
SU4(22n)
Sp4(q) invar., p | q, p odd An, Himstedt, Huang, Yamada
SUn(q) ord., p | q Bird

2. Sporadic Simple Groups:

M11, M12, J1, J2 final Dade
M22 final Huang
M23, M24 final Schwartz, An, Conder
J3 final Kotlica
McL final Murray, Entz, Pahlings
Ru final Dade, An, O’Brien
He final An
HS final Hassan, Horváth
Co1 final An, O’Brien
Co2 final An, O’Brien
Co3 final An
Suz final Himstedt
O′N final An, O’Brien, Uno, Yoshiara
Th final Uno
Ly final Sawabe, Uno
HN final An, O’Brien
Fi23 final An, O’Brien
Fi22 invar. An, O’Brien
J4 An, O’Brien, Wilson
B p odd An, Wilson
Fi′24 An, Cannon, O’Brien, Unger
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3. Exceptional Groups:

2B2(22n+1) final Dade
2G2(32n+1) final p 6= 3 An, p = 3 Eaton
G2(q) final, 2, 3 | q, p - q q 6= 3, 4 An
G2(q) final, p | q(p ≥ 5), q = 3, 4 Huang
3D4(q) final, p - q An
3D4(q) final, p | q (p = 2 or odd) An, Himstedt, Huang
2F4(22n+1) ord., p 6= 2 An
2F4(22n+1) final, p = 2 Himstedt, Huang
2F4(2)′ final An

4. Other cases:

Sn ord., p 6= 2 Olssen, Uno
Sn ord., p = 2 An
An, abelian defect ord. Fong, Harris
Cyclic defect group final Dade
Tame block invar. Uno
Abelian defect unipotent blocks ord. Broué, Malle, Michel
Abelian defect principal blocks ord., p = 2 Fong, Harris
Abelian defect some cases ord. Piug, Usami
p-solvable proj. Robinson
Op(G) cyclic, Op(G)/G p-Sylow TI proj. Eaton
Nilpotent blocks

The sequence of most interest with respect to this paper is the following: Olsson and
Uno proved DOC for GLn(q) in the defining characteristic [15]. Sukizaki proved it for

n(q) also in the defining characteristic [21]. Chao Ku verified DOC in his doctoral thesis
for Un(q).

Assuming that Dade’s Ordinary Conjecture is true for all finite groups implies a
number of other conjectures. In this sense DOC encodes a variety of information. DOC
implies Alperin’s Weight Conjecture which counts Brauer characters. DOC implies the
Alperin-McKay Conjecture which is a refinement of the McKay Conjecture. DOC also
implies one direction of Brauer’s Height Conjecture which involves abelian defect groups.
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2 Preliminaries

We begin these preliminaries with our definition of the finite unitary and special unitary
groups. Throughout this article q is a fixed power of the prime p. Let K = Fq, and

G̃ = GLn(K). Define the matrix

M =


0 . . . 0 1
0 . . . 1 0
... . .

. ...
...

1 . . . 0 0

 .

Define the following Frobenius map F on G̃ by:

F (ai,j) = M(aqj,i)
−1M−1.

The group of fixed points G̃F is the finite unitary group Un(q), i.e.

Un(q) = {(ai,j) |M = (ai,j)M(aqj,i)}.

Clearly Un(q) ≤ GLn(q2). The advantage of this definition is that F fixes the subgroup
of upper triangular matrices in GLn(q2). We can define the special unitary groups in
two equivalent ways. On the one hand, the group of fixed points of n(K) under F is
SUn(q). On the other hand,

SUn(q) = {A ∈ Un(q) | det(A) = 1}.

The Weyl group W of Un(q) is of type Bm, where n = 2m, or 2m+ 1, and is isomorphic
to the wreath product C2 o Sm. The symmetric group on m elements is generated by
reflections indexed by {1, 2, . . . ,m − 1} and the cyclic group of order 2 is generated by
the reflection indexed by {m}. With this identification, the distinguished generators of
W may be indexed by I = {1, 2, . . . ,m} denoted by [m].

2.1 Some Notation

Throughout this article we will make use of the following notation. Let q be a fixed
power of prime p. We consider the finite field Fq2 and its group of units F ∗q2 . For divisors

h of q2 − 1, let Ch denote the cyclic subgroup of order h in F ∗q2 . So in particular Cq+1

denotes the cyclic subgroup of order q + 1 in Cq2−1.

2.2 On radical p-chains

In order to reformulate DOC for the finite special unitary groups we will need the
following proposition due to Sukizaki.

Proposition 2.1 ([21], Proposition 2.1) Let G be a finite group and let H be a subgroup
of G. If H contains all p-subgroups of G and satisfies Op(G) = Op(H), then any radical
p-chain of H is a radical p-chain of G.
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2.3 Certain functions on partitions

In this section we are following the development of Olsson and Uno ([15]), Sukizaki
([21]), and Ku ([14]). To that end we discuss partitions. Further we define two impor-
tant functions α and β on pairs (µ, a) where µ is a partition and a is a field element.
The function α was defined in ([15], p.363). The function β was introduced as a unitary
version of α and was defined in ([14], p.16). These functions are involved in expressing
the q-height of characters. Further, it turns out that they are also involved in the split-
ting of characters upon restriction to certain subgroups. We assert some combinatorial
facts about the behavior of these functions.

Let µ = (al11 , a
l2
2 , . . . , a

lr
r ) ` n, where a1 > a2 · · · > ar > 0. We define |µ| =∑r

i=1 liai = n. Let the number of distinct parts of the partition be δ(µ) = r and
the length of the partition l(µ) =

∑r
i=1 li . We define γ(µ) = gcd(a1, a2, . . . , ar) and

λ(µ) = gcd(l1, l2, . . . , lr).
Given µ1 ` n1 and µ2 ` n2 we can define 2µ1 ∪µ2 ` n = 2n1 +n2. In order to define

this new partition write µi = (1mi1 , 2mi2 , . . . , n
mini
i ), so that for nonzero mit, the integer t

appears in µi with multiplicitymit. Then define 2µ1∪µ2 = (12m11+m21 , 22m12+m22 , . . . , n2m1n+m2n).

Definition 2.2 Let a ∈ Cq2−1 and µ = (al11 , a
l2
2 , . . . , a

lr
r ) ` n. We define a function α

by
α(µ, a) = |{(x1, x2, . . . , xr) ∈ (Cq2−1)r | (−1)nx1

a1xa22 . . . xarr = a}|.

Lemma 2.3 With µ defined as above and a ∈ Cq2−1 we have

α(µ, a) = (q2 − 1)r−1α(γ, a)

where γ = γ(µ) and

α(γ, a) =

{
gcd(q2 − 1, γ), if a ∈ C(q2−1)/gcd(q2−1,γ);

0, otherwise.

See ([15], p.363) for the proof.

Definition 2.4 Let b ∈ Cq+1 and µ = (al11 , a
l2
2 , . . . , a

lr
r ) ` n. We define a function β

β(µ, b) = |{(x1, x2, . . . , xr) ∈ (Cq+1)r | (−1)nx1
a1xa22 . . . xarr = b}|.

Lemma 2.5 With µ defined as above and b ∈ Cq+1 we have

β(µ, b) = (q + 1)r−1β(γ, b)

where γ = γ(µ) and

β(γ, b) =

{
gcd(q + 1, γ), if b ∈ C(q+1)/gcd(q+1,γ);

0, otherwise.
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The proof is similar to the proof of Lemma 2.3.
In practice we will be restricting our attention to elements b in Cq+1 and hence have

need of the following modification of our α function which was defined in ([14], p.16).

Definition 2.6 For b ∈ Cq+1 and µ = (al11 , a
l2
2 , . . . , a

lr
r ) ` n we define

β(µ, b) =
∑

a∈Cq2−1

aq−1=b

α(µ, a).

Some important technical facts from ([14], [15], and [21]) regarding α, β, and β are
summarized in the following lemmas.

Lemma 2.7 If (k) ` k and µ = (al11 , a
l2
2 , . . . , a

lr
r ) ` n, then∑

b1,b2∈Cq+1

b1b2=b

β((k), b1)β(µ, b2) = β(λ, b)

where λ = ((a1 + k)l1 , (a2 + k)l2 , . . . , (ar + k)lr , kx) ` (n+ (l(µ) + x)k).

Lemma 2.8 If µi ` ni, for i = 1, 2, and µ = 2µ1 ∪ µ2 ` n = 2n1 + n2, then∑
b1,b2∈Cq+1

b1b2=b

β(µ1, b1)β(µ2, b2) = (q − 1)δ(µ1)(q + 1)c(µ1,µ2)β(µ, b)

where c(µ1, µ2) is the number of distinct entries that µ1 and µ2 have in common.

Lemma 2.9 If µ ` n, then∑
(µ1,µ2)

µ=2µ1∪µ2

q2(l(µ1)−δ(µ1))(q − 1)δ(µ1)(q + 1)c(µ1,µ2) = ql(µ)−δ(µ).

Notice that this sum is taken over all pairs of partitions (µ1, µ2) such that µ = 2µ1 ∪µ2.
These results are proved in ([14]). We mention that the last 2.9 is proved by

associating to the pair (µ1, µ2) a matrix and its shadow which are defined as follows:

Definition 2.10 For two partitions µi = (tmit), i = 1, 2, with µ = (2µ1 ∪ µ2) ` n we
define the 2 by n matrix

A(µ1, µ2) = A =

(
m11 m12 · · · m1n

m21 m22 · · · m2n

)
Given such an A we define the shadow of A to be the 2 by n matrix (cij) where the
ij-entry

cij =

{
1, if mij is nonzero;
0, otherwise.
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Thus taking the sum over pairs (µ1, µ2) in Lemma 2.9 is equivalent to taking the sum
over possible matrices A(µ1, µ2). We also remark that with this definition of the shadow,
the number of entries that µ1 and µ2 have in common c(µ1, µ2) =

∑n
t=1 c1tc2t.

Suppose that we have a pair (µ1, µ2) with µ = 2µ1∪µ2 a partition of n and all nonzero
multiplicities of µi, i = 1, 2, are divisible by a fixed integer j, i.e. j| gcd(λ(µ1), λ(µ2)).
First of all it is clear that j|λ(µ). Write µ = (tmt) so that 2m1t+m2t = mt. Observe that
tmt ≤ n must hold. In particular (n/j)mn/j ≤ n implies that mn/j is the last possibly
nonzero exponent in µ. In other words the matrix A(µ1, µ2) must have zero entries to
the right of the n/j-column. Furthermore, A may be decomposed:

A =

(
m11 m12 · · · m1n

m21 m22 · · · m2n

)
=

(
j 0
0 j

)(
k11 k12 · · · k1n

k21 k22 · · · k2n

)
= jB.

If we remove the zero columns to the right of the n/j-column of B, we obtain
A(κ1, κ2), the 2 by n/j matrix associated to κ1 = (tk1t) and κ2 = (tk2t) for 1 ≤ t ≤ n/j.
If µ = (t2m1t+m2t), then κ = (t2k1t+k2t) = 2κ1 ∪ κ2, a partition of n/j. We have the
following equalities:

l(µ1)/j = l(κ1); δ(µ1) = δ(κ1);

c(µ1, µ2) = c(κ1, κ2); l(µ)/j = l(κ); δ(µ) = δ(κ).

Thus for a fixed partition µ ` n∑
(µ1,µ2)

µ=2µ1∪µ2
j| gcd(λ(µ1),λ(µ2))

q2(l(µ1)/j−δ(µ1))(q − 1)δ(µ1)(q + 1)c(µ1,µ2)

=
∑

(κ1,κ2)
κ=2κ1∪κ2

q2(l(κ1)−δ(κ1))(q − 1)δ(κ1)(q + 1)c(κ1,κ2)

Hence we have the following important corollary to 2.9:

Corollary 2.11 If µ ` n, then∑
(µ1,µ2)

µ=2µ1∪µ2
j| gcd(λ(µ1),λ(µ2))

q2(l(µ1)/j−δ(µ1))(q − 1)δ(µ1)(q + 1)c(µ1,µ2) = ql(µ)/j−δ(µ).

2.4 Applications of the Clifford Theory

We will make abundant use of Clifford Theory. A reference for this section is ([6],
Chapter 11). We summarize here the results that we need. In this section we assume
that G is a finite group with a normal subgroup H. For ψ ∈ Irr(H) and g ∈ G we define
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the character gψ by gψ(h) = ψ(g−1hg) for all h ∈ H. Let TG(ψ) denote the stabilizer of
ψ in G so that

TG(ψ) = {g ∈ G | gψ = ψ}.

We define a subset of characters in Irr(G)

Irr(G,ψ) = {χ ∈ Irr(G) | (χ|H , ψ)H 6= 0}.

If χ ∈ Irr(G,ψ) we will say that χ corresponds to ψ.
We define a subset of characters in Irr(H)

Irr(H,χ) = {ψ ∈ Irr(H) | (χ|H , ψ)H 6= 0}.

This definition is equivalent to saying that the χ appear in the induced character of ψ
to G. Thus we will say that ψ corresponds to χ if ψ ∈ Irr(H,χ).

Theorem 2.12 ([6], Proposition 11.4) Let ψ ∈ Irr(H) and χ ∈ Irr(G,ψ). Then

χ|H = e

 ∑
x∈G/TG(ψ)

xψ


where e is a positive integer.

Theorem 2.13 ([6], Theorem 11.5) Let ψ ∈ Irr(H) and suppose that ψ = ψ̃|H for some
character ψ̃ of TG(ψ), that is, suppose that ψ can be extended to a character ψ̃ of TG(ψ).
Write T = TG(ψ) then

Irr(T, ψ) = { θψ̃ | θ ∈ Irr(T/H) }, and

Irr(G,ψ) = { (θψ̃)G | θ ∈ Irr(T/H) }.

Here we regard θ as a character of T .

We have the following corollary which is a simple consequence of the transitivity of
character induction.

Corollary 2.14 If ψ ∈ Irr(H) and P is any subgroup of G that contains TG(ψ) then

|Irr(P,ψ)| = |Irr(G,ψ)|.

Moreover, there is a 1-1 correspondence between characters in each of these sets given
by

φ = (θψ̃)P ↔ (θψ̃)G = χ.

If φ ∈ Irr(P,ψ) corresponds to χ ∈ Irr(G,ψ) and χ(1) has p-part equal to pd then the
p-part of φ(1) is pd−d

′
where |P\G| has p-part pd

′
.

Lemma 2.15 ([22], Lemma 2.5) If G/H is cyclic then the following hold:
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1. Characters of G restricted to H are multiplicity free. In other words e = 1 in 2.12.

2. Two characters of G either restrict to the same character of H or have disjoint
irreducible components.

3. If ψ ∈ Irr(H) and χ ∈ Irr(G,ψ) then |Irr(H,χ)| = |G|/(|H||Irr(G,ψ)|).

We have another important consequence of Clifford Theory concerning when an
extension of a character exists when G is a semi-direct product.

Lemma 2.16 ([21], Theorem 2.5) Let G be a finite group with G = P nM .

1. If τ ∈ Irr(M) is linear, then τ extends to an irreducible character τ̃ of T = TG(τ).
Moreover

Irr(G, τ) = {(θτ̃)G | θ ∈ Irr(T/M)}.

2. Let H be a normal subgroup of G containing M and suppose that G/H is cyclic.
If θ ∈ Irr(T/M), then

|Irr(H, (θτ̃)G)| = |G : TH||Irr(TH(τ), θ)|.

We will be interested in the existence of extensions of non-linear characters of certain
normal subgroups. The following result of Dade’s on the extendibility of characters of
normal extraspecial p-subgroups is certainly relevant.

Lemma 2.17 ([8]) Let E be an extra special p-group and G = HnE with Z(E) ≤ Z(G).
Assume that for each normal p′-subgroup K of H, the commutator subgroup [K,E] = 1.
If ψ ∈ Irr(E) is non-linear, then ψ is extendible to G.

2.5 On a Product of Groups

We will be examining the splitting of characters of direct products upon restriction to
certain normal subgroups. We note that if G = G1 ×G2, then an irreducible character
of G is of the form χ1χ2 where χi ∈ Irr(Gi). We will have need of the following result.

Lemma 2.18 ([21]) Let G = G1 × G2 where the group homomorphism φi : Gi → F ∗q2
has image Chi for i = 1, 2. Set

H = {(g1, g2) ∈ G | φ1(g1)φ2(g2) = 1}.

If χi has mi irreducible constituents upon restriction to kerφi, then χ = χ1χ2 restricted
to H has m irreducible constituents, where

m =
gcd

(
m1(q2 − 1)/h1,m2(q2 − 1)/h2

)
gcd ((q2 − 1)/h1, (q2 − 1)/h2)

.
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2.6 Restriction of Characters to the Kernel of the Determinant Map

In this section we present results for GLn(q2) and Un(q). Sukizaki’s result is proved us-
ing G.I. Lehrer’s work which uses an earlier parametrization of the characters of GLn(q).
We will use the more modern approach of Deligne-Lusztig theory. However, our goal
remains the same in that we construct sequences of polynomials corresponding to char-
acters and use them to count the number of characters.

Definition 2.19 Let G = GLn(q2) or Un(q). Given a homomorphism φ : G → (Fq2)∗

and ρ ∈ Irr(Z(G)), we define the following:

1. Let Irrd(G, ρ, φ, j) be the set of irreducible ordinary characters χ of G with q-height
d and lying over ρ such that the restriction of χ to the kernel of the map φ has j
irreducible components.

2. Let kd(G, ρ, φ, j) denote the number of irreducible ordinary characters χ of G with
q-height d and lying over ρ such that the restriction of χ to the kernel of the map
φ has j′ irreducible components, where j divides j′, i.e.

kd(G, ρ, φ, j) =
∑
j′

j|j′

|Irrd(G, ρ, φ, j′)|.

We will be considering the determinant map on Un(q) and certain subgroups. For a
matrix element A, det(A) denotes the usual matrix determinant. We will consider sub-
groups of Un(q) whose elements are block matrices. If A is a block matrix with block
matrices A1, A2, . . . , As down its diagonal then det(A) = det(A1) det(A2) · · · det(As).
Moreover, if certain of the Ai are repeated then det(A) may involve powers of det(Ai).
Define deth(A) = (det(A))h. We apply definition 2.19 below with φ = det.

We now fix an isomorphism between (F q)
∗ and Irr((F q)

∗) and consider it fixed for
the rest of this paper. In practice, we are primarily interested in the subgroup F ∗q2 . The

group Z = Z(GLn(q2)) ∼= F ∗q2 = Cq2−1. Further, assume that the induced isomorphism

of Cq2−1 with Irr(Cq2−1) is given by the following. Let ε generate Cq2−1. Define the
isomorphism via

ε 7→ ρε where ρε(ε) = e(2πi)/(q2−1).

Under this isomorphism, ρ ∈ Irr(Cq2−1) corresponds to aρ ∈ Cq2−1. Equivalently
a ∈ Cq2−1 corresponds to ρa ∈ Irr(Cq2−1). This induces an isomorphism of Irr(Z(Un(q)))
with Cq+1.

The following integer valued function on partitions of n is involved in the q-height of
characters for GLn(q2) and Un(q).
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Definition 2.20 We define n′(µ):

n′(µ) =

r∑
i=1

li

(
ai
2

)
.

Our first proposition is a slight reformulation of Sukizaki’s result in [21]. This is
needed as our ground field is Fq2 rather than Fq. For µ ` n, recall λ(µ), l(µ), and δ(µ)
defined on page 12.

Proposition 2.21 ([21], Lemma 4.1) Let ρ ∈ Irr(Cq2−1). Then

k2d(GLn(q2), ρ,det, j) =
∑
µ`n

n′(µ)=d
j|gcd(q2−1,λ(µ))

q2(l(µ)/j−δ(µ))α(µ, aρ).

For ρ ∈ Irr(Cq+1) we define

k2d(GLn(q2), ρ,det1−q, j) =
∑

ρ′∈Irr(Cq2−1)

ρ′|Cq+1
=ρ

k2d(GLn(q2), ρ′, det1−q, j).

Then since (q2− 1)/(q− 1) = q+ 1, by Sukizaki’s equation following equation 3-5 in
[21] we have a disjoint union

Irr2d(GLn(q2), ρ′,det1−q, j) =
⊔
j′

j=gcd(q+1,j′)

Irr2d(GLn(q2), ρ′,det, j′).

This together with our definition of β from earlier in this section implies the following
corollary:

Corollary 2.22 Let ρ ∈ Irr(Cq+1). Then

k2d(GLn(q2), ρ,det1−q, j) =
∑
µ`n

n′(µ)=d
j|gcd(q+1,λ(µ))

q2(l(µ)/j−δ(µ))β(µ, aρ).

We present the case for Un(q) now for completeness. We will prove this in the next
section.

Proposition 2.23 Let ρ ∈ Irr(Cq+1). Then

kd(Un(q), ρ,det, j) =
∑
µ`n

n′(µ)=d
j|gcd(q+1,λ(µ))

ql(µ)/j−δ(µ)β(µ, aρ)
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Remark: Let χ be an irreducible character of GLn(q2). If χ |ker det has j irreducible
constituents, then j divides gcd(q2 − 1, n). ([19], Theorem 4.7). If χ |ker det1−q has
j irreducible constituents, then j divides gcd(q + 1, n). Now let χ be an irreducible
character of Un(q). If χ |ker det has j irreducible constituents, then j divides gcd(q+1, n).
An identical theorem for the unitary case may be obtained making the following simple
modifications to the proof of ([19], Theorem 4.7): Change Definition 4.6 by defining

M(d) = {A ∈ Un(q) | detA = ξdk , k = 1, . . . , (q + 1)/d}

where d = gcd(n, q+ 1) and ξ = ε1−q, a generator of the subgroup Cq+1 in F ∗q2 . Then in

Lemma 4.6 and Theorem 4.7 replace GLn(q) with Un(q) and n(q) with SUn(q).
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3 Characters of Un(q) restricted to SUn(q)

In this section we prove Proposition 2.23. We start by parameterizing irreducible
characters χ of Un(q) via pairs (s, λ), and construct a unique sequence of polynomi-
als (h1(x), h2(x), . . .) corresponding to χ. The subgroup SUn(q) is normal in Un(q)
with cyclic quotient isomorphic to Cq+1 which acts naturally on Irr(SUn(q)) via Un(q)-
conjugation. In the last section, we fixed an isomorphism Cq2−1

∼= Irr(Cq2−1) and hence
we have an isomorphism Cq+1 ' Irr(Cq+1). The group Irr(Cq+1) acts on Irr(Un(q)).
Indeed, if ρ ∈ Irr(Cq+1) then we have a corresponding linear character of Un(q) also
denoted by ρ. Then ρ ∈ Irr(Cq+1) acts on Irr(Un(q)) by

χ 7→ ρ⊗ χ abbreviated by ρχ.

Let χ ∈ Irr(Un(q)). By Clifford Theory, χ restricted to SUn(q) is multiplicity free.
If

χ|SUn(q) = ψ1 + ψ2 + · · ·ψj where ψi ∈ Irr(SUn(q))

then the ψi are Un(q)-conjugates of one another.
The following lemma uses the well-known fact on characters of finite groups that if

G is a finite group and H ≤ G, and ϑ, η are characters of H, G respectively, then

ηIndGH(ϑ) = IndGH(η|Hϑ).

Lemma 3.1 Let χ, χ′ ∈ Irr(Un(q)). Then χ, χ′ have the same restriction to SUn(q) if
and only if χ′ = ρχ for some ρ ∈ Irr(Cq+1).

Proof: Let χ′ = ρχ. Since SUn(q) is in the commutator subgroup of Un(q), ρ is
trivial on SUn(q) and hence χ, χ′ have the same restriction to SUn(q).

Suppose ψ is a common constituent of χ, χ′ restricted to SUn(q). Let T be the
stabilizer of ψ in SUn(q). Then ψ extends to ψ̃ ∈ Irr(T ), and we have

χ = Ind
Un(q)
T (ψ̃φ), χ′ = Ind

Un(q)
T (ψ̃φ′)

where φ, φ′ are lifts to T of characters of T/SUn(q), denoted φ1, φ′1. Then φ1, φ′1 can
be extended to characters ξ1, ξ′1 of Un(q)/SUn(q), which can be lifted to characters ξ,
ξ′ of Un(q). Then we have

χ = Ind
Un(q)
T (ψ̃)ξ, χ′ = Ind

Un(q)
T (ψ̃)ξ′.

Thus χ, χ′ differ by a linear character. Since every linear character of Un(q) is of the
form ρz for some z ∈ Cq+1 we have χ′ = ρχ.

Let E = {ψ1, ψ2, . . . , ψj} and let F = {χ1, χ2, . . . , χr} where the χi are the con-

stituents of the induced character Ind
Un(q)
SUn(q)(ψ) for any ψ ∈ E . Then E is a Cq+1-stable

subset of Irr(SUn(q)) and F is a Irr(Cq+1)-stable subset of Irr(Un(q)). Hence r = (q+1)/j
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and our original character χ is stabilized by ρz ∈ Irr(Cq+1) where z ∈ Cq+1 is a primitive
j-th root of unity, i.e.

χ = ρzχ.

This forces certain conditions on the coefficients in the polynomials in (h1(x), h2(x), . . .)
corresponding to χ and allows us to count how many χ of a fixed q-height are fixed by
a j-th root of unity.

3.1 Pairs (s, λ)

Let K = F q. Consider the algebraic group G̃ = GLn(K) with Frobenius endomorphism

defined in the last section, F : G̃→ G̃ by F ((aij)) = M(aqji)
−1M−1. Then let G = G̃F =

Un(q).
A reference for the following is ([10], section 1). A subgroup L of G is Levi if L = L̃F

for some F -stable Levi subgroup L̃ of a parabolic subgroup P̃ of G̃. For a Levi subgroup
L of G, let RGL be the additive operator from X(L) to X(G) defined in the Deligne-
Lusztig theory, where X(L) and X(G) are the character rings of representations of L
and G over Ql, an algebraic closure of the l-adic field Ql (l 6= p). Recall, in the previous
section we fixed an isomorphism between (F q)

∗ and Irr((F q)
∗). Providing a coherent

choice of roots of unity (via monomorphisms of multiplicative groups) has been made,
this leads to an isomorphism

Z(L) ∼= Irr(Z(L)) = Hom(Z(L),Ql)

as in ([4], Section 8.2). Recall, ρs is the linear character of L corresponding to s ∈
Z(L). We have a Jordan decomposition of characters of G. Namely the set of ordinary
irreducible characters of G is in one-to-one correspondence with the set of pairs (s, λ).
In our case, this means

χ↔ (s, λ)

where s is a representative of a semi-simple conjugacy class of G and λ is a unipotent
character of L = CG(s), i.e. λ appears as a constituent of RLT (1) for some maximal torus
T of L.

Let εL = (−1)d where d is the dimension of a maximal Fq2 split torus of L. Then

χ = εGεLR
G
L (ρsλ) by ([10], p.116).

Proposition 3.2 For ρz ∈ Irr(Z(G)), and χ ∈ Irr(G)

χ↔ (s, λ)⇔ ρzχ↔ (zs, λ).

where (s, λ) is the Jordan decomposition of χ.

Proof: Let L = CG(s) = CG(sz). Then

χ = εGεLR
G
L (ρsλ).
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Moreover
ρzχ = εGεLR

G
L (ρz(ρsλ)), by ([4], Proposition 8.20)

= εGεLR
G
L ((ρzρs)λ),

which corresponds to the pair (zs, λ).

Remark: The above discussion also holds for the finite group GLn(q) = G̃F
′

where
the Frobenius map is given by F ′((ai,j)) = (aqi,j).

3.2 Sequences of polynomials

In order to count efficiently we make use of polynomial sequences. We construct certain
sequences which correspond to the irreducible characters of Un(q). This identification
arises naturally out of Deligne-Lusztig Theory. These polynomials encode information
about both s and λ. This procedure is known in the case of GLn(q) where if χ cor-
responds to the pair (s, λ) then χ corresponds to a sequence (h1(x), h2(x), . . .). The
hi(x) are products of powers of irreducible polynomials over Fq which are elementary
divisors of s; the powers of these divisors come from λ. In precisely the same spirit,
irreducible characters of Un(q) can be identified with sequences (h1(x), h2(x), . . .) where
the hi(x) are products of powers of polynomials over Fq2 , appropriate for Un(q), which
are elementary divisors of s. We proceed with this identification.

It is well known that the conjugacy class of an element in GLn(q2) may be described
by the elementary divisors of the rational canonical form. These divisors are powers of
monic irreducible polynomials in Fq2 [x] with non-zero roots. View Un(q) as a subgroup
of GLn(q2). Let g ∈ GLn(q2) have GLn(q2)-conjugacy class [g]. The intersection [g] ∩
Un(q) is either a Un(q)-conjugacy class or is empty ([10], p.111). Let f be a monic
irreducible polynomial in Fq2 [x] of degree d with nonzero roots {ω}. We define f̃ to
be the polynomial in Fq2 [x] with roots {ω−q}. Let mf i(g) denote the multiplicity of f i

as an elementary divisor of g. Then [g] ∩ Un(q) is nonempty precisely when mf i(g) =
mf̃ i(g) holds ∀f and ∀i. Hence the conjugacy class of an element in Un(q) is given by
the elementary divisors of its rational canonical form and these divisors are powers of
polynomials in a subset F of Fq2 [x].

Definition 3.3 Let F1 = {f |f 6= x is monic, irreducible and f = f̃} and let F2 =
{ff̃ |f 6= x is monic, irreducible and f 6= f̃}. Let F = F1 ∪ F2.

Notice that for every polynomial f ∈ F, f = f̃ . Members of F1 have odd degree
and members of F2 have even degree. The latter fact is obvious. The former can be
observed by noting that since f is irreducible the roots are the Galois conjugates of ω.
Suppose that d = 2k. If f = f̃ , then {ω, ω−q, . . . , ω(−q)d−1} = {ω−q, ωq2 , . . . , ω(−q)d}.
Hence ω = ω(−q)n = ωq

d
so ω ∈ Fqd . But Fqd is an extension of Fq2 of degree k, hence f

is reducible, a contradiction.
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An element g ∈ Un(q) is semi-simple if and only if mf i(g) = 0 for all i > 0. Given a
semi-simple s ∈ Un(q), we want to describe its centralizer CUn(q)(s). Let s have primary
decomposition s =

∏
f∈F sf where sf is the primary component corresponding to ele-

mentary divisor f . Let s have minimal polynomial min(x) =
∏
f∈F f and characteristic

polynomial ch(x) =
∏
f∈F f

mf (s). Then s has rational canonical form

s =
⊕
F

mf (s)c(f)

where c(f) denotes the df × df companion matrix of the polynomial f with degree df
and for nonzero multiplicity mf (s), mf (s)c(f) denotes the mf (s)df ×mf (s)df matrix
with mf (s) copies of c(f).

Proposition 3.4 ([10], Proposition 1A) Let s have primary decomposition s =
∏
f∈F sf

and rational canonical form

s =
⊕
f∈F

mf (s)c(f).

The structure of the centralizer of s is given by

CUn(q)(s) =
∏
f∈F

C(sf ), where

1. If f ∈ F1, then C(sf ) = Umf (sf )(Ff ), where |Ff : Fq2 | = deg(f).

2. If f ∈ F2, then C(sf ) = GLmf (sf )(Ff ), where |Ff : Fq2 | = 1
2deg(f).

Hence the centralizer of an element is a product of general linear and unitary groups.
A unipotent character of such a product is a product of unipotent characters. More-
over, the unipotent characters of both the general linear and unitary groups are indexed
by partitions of the dimension of the underlying vector space. In particular, the unipo-
tent characters of Un(qm) and GLn(qm) are given by partitions of n, for any exponent m.

Let χ ∈ Irr(Un(q)) correspond to the pair (s, λ). Since λ is a unipotent character of
CUn(q)(s) it is a product of unipotent characters of the C(sf ) which are general linear
or unitary groups each of which corresponds to a partition µf ` mf (s). Let P denote
the set of all partitions including the empty partition. We define the map

Λ : F −→ P

f 7→ µf .

Notice that
∑

f∈F dfmf (s) = n.
Our construction is summarized in the following often quoted proposition which

originates with Green’s important paper on general linear characters, and has been
modified for Un(q) by several authors. Here we use the notation of Ku ([14]). For a
partition µ recall the definitions of |µ| on page 12 and n′(µ) on page 18 in the previous
section.
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Proposition 3.5 ([14], Proposition 4.2.2 and Lemma 4.2.3) Let P denote the set of
all partitions of all integers n > 0, together with the empty partition. The irreducible
characters of Un(q) are in one-to-one correspondence with maps Λ from F to P which
satisfy the following: ∑

f∈F
|Λ(f)|df = n.

If χ ∈ Irr(Un(q)) corresponds to such a map Λ, then the following hold:

1. The q-height of χ is
∑

f∈F dfn
′(Λ(f)′) where Λ(f)′ is the conjugate partition of

Λ(f).

2. The character χ lies over ρ ∈ Irr(Z(Un(q))) where aρ is the product of the roots of∏
f∈F f

|Λ(f)|.

Let χ ∈ Irr(G) be associated to the pair (s, λ) which is in turn associated to the map
Λ : F → P. For each f ∈ F, write the conjugate partition Λ(f)′ = (tmf,t). Using these
exponents, we may now define for χ a unique sequence of polynomials (h1(x), h2(x), . . .)
by letting

hi(x) =
∏
f∈F

fmf,i .

We will be concerned with examining classes of irreducible characters which share certain
properties. We want to group characters by their q-height and also by their splitting
upon restriction to certain subgroups. To that end we make the following definition
which will be of utmost importance in this endeavor.

Definition 3.6 If χ determines the sequence (h1(x), h2(x), . . .), we will say that χ is of
µ-type where µ = (tdeg(ht(x))) ` n.

3.3 Proof of Proposition 2.23

In this section we verify Proposition 2.23. Recall kd(Un(q), ρ,det, j) is the number of
χ ∈ Irr(Un(q)) of q-height d lying over ρ such that χ|SUn(q) has j′ irreducible constituents

where j|j′. Let ρ ∈ Irr(Cq+1) and µ = (al11 , a
l2
2 , . . . , a

lr
r ) ` n. Let Irr(Un(q), µ, ρ) denote

the irreducible characters of Un(q) of µ-type lying over ρ. Let χ ∈ Irr(Un(q), µ, ρ) corre-
spond to (s, λ) and (h1, h2, . . .). Suppose ρz is the linear character of Un(q) corresponding
to z ∈ Cq+1, a primitive j-th root of unity and that

χ = ρzχ.

By 3.2 ρzχ corresponds to (zs, λ). If hi in (h1, h2, . . .) has roots {ω} then (zs, λ) corre-
sponds to (g1, g2, . . .) where gi has roots {zω}. Then we have

(h1, h2, . . .) = (g1, g2, . . .).
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Since χ is of µ-type, hai(x) is a polynomial of degree li and hence gai(x) also has degree
li. Let

{ωi,k|1 ≤ k ≤ li} denote the roots of hai(x).

Then

hai(x) =

li∏
k=1

(x− ωi,k)

= xli + · · ·+ bi,1x+ bi,0

gai(x) =

li∏
k=1

(x− zωi,k)

= xli + · · ·+ zli−1bi,1x+ zlibi,0.

Recall λ(µ) was defined on page 12 and is equal to gcd(l1, l2, . . . , lr). Our first
observation is that bi,0 is nonzero. Hence zli = 1 for each i = 1, 2, . . . , r thus j divides
λ(µ). Secondly, we must have bi,jx

k = zli−kbi,kx
k. If li − k is not divisible by j, i.e. j

doesn’t divide k, the coefficient bi,k = 0. This reduces the possible number of nonzero
coefficients.

If χ lies over ρ then (−1)n
∏r
i=1(bi,0)ai = aρ by construction. The bi,k are symmetric

functions of the roots. Simplifying notation for a moment, since h(x) = xm+. . .+b1x+b0
is a product of polynomials in F, the coefficients satisfy bm−i = b0b

q
i . If m is even

b1−qm/2 = b0. Hence we have (li/j−1)/2 degrees of freedom in the nonconstant coefficients,

i.e. q2(li/j−1)/2 choices for the bi,k and thus

|Irr(Un(q), µ, ρ)| = ql(µ)/j−δ(µ)β(µ, aρ).

The left hand side of the sum in Proposition 2.23 can now be evaluated.

kd(Un(q), ρ,det, j) =
∑
j′

j|j′

|Irrd(Un(q), ρ,det, j′)|

=
∑
j′

j|j′

∑
µ`n

n′(µ)=d
j′| gcd(q+1,λ(µ))

|Irr(Un(q), µ, ρ)|

=
∑
µ`n

n′(µ)=d
j|gcd(q+1,λ(µ))

ql(µ)/j−δ(µ)β(µ, aρ).
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4 The Finite Special Unitary Groups: A Reduction of
DOC

In this section we make use of Clifford theory in the manner of Sukizaki ([21]) to refor-
mulate DOC for the Special Unitary group SUn(q) in terms of Un(q). In this section we
will distinguish between subgroups of Un(q) and SUn(q) with superscripts as indicated.
Recall I = [m] is our index set for the distinguished generators of the Weyl group for
Un(q). We have n = 2m or 2m + 1. In keeping with established notation, let K = F q.

Let B̃ be the Borel subgroup of upper triangular matrices of the linear algebraic group
G̃ = GLn(K). A Frobenius endomorphism on G̃ was defined by

F (aij) = M(aqji)
−1M−1,

and the unitary group Un(q) = G̃F . The special unitary group is defined

SUn(q) = {g ∈ Un(q) | det g = 1}.

Note that except for the cases n = 2 and q ≤ 3, the derived subgroup G̃′ =n (K) so
SUn(q) = G̃′F . The group of fixed points of B̃ under F is a Borel subgroup for Un(q).
Let BU be this subgroup. Notice that BU is upper triangular. We will fix a Borel sub-
group BSU = BU ∩ SUn(q) for SUn(q). Notice that BSU is the group of fixed points of
the Frobenius restricted to n(K) and is also upper triangular. We have corresponding
Levi decompositions BU = T nU and BSU = SnU where S = T ∩SUn(q). By standard
parabolic subgroups we mean subgroups containing BU or BSU. For J ⊆ I let PU

J or
P SU
J be the standard parabolic group of Un(q) or SUn(q) respectively corresponding to
J . For fixed J ⊂ I, we have PU

J = NUn(q)(UJ) and P SU
J = NSUn(q)(UJ), both containing

the same upper triangular unipotent radical, i.e. Op(P
U
J ) = Op(P

SU
J ) = UJ

The group SUn(q) contains every p-subgroup of Un(q) andOp(SUn(q)) = Op(Un(q)) =
1. Thus any radical p-chain of SUn(q) is a radical p-chain of Un(q) by Proposition 2.1.
Conversely, let

C : U0 < U1 < · · · < Ul

be a radical p-chain of Un(q). The Ui are unipotent radicals of parabolic subgroups of
Un(q). Hence each Ui is conjugate to a standard unipotent radical UJi , i.e. for each i
there exists gi ∈ Un(q) such that

Ui = giUJigi
−1.

For all x ∈ F ∗q2 , the matrix

x̄ =



x 0 . . . 0

0 1
...

...
. . .

1 0
0 . . . 0 x−q

 stabilizes all standard UJi .
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In particular, this holds for x̄i such that x1−q
i = (det(gi))

−1. Moreover, ∀gi ∈ Un(q)
there exists such an xi ∈ F ∗q2 . Thus

Ui = gi(x̄iUJi x̄i
−1)gi

−1 = (gix̄i)UJi(gix̄i)
−1

where gix̄i ∈ SUn(q). Thus C is SUn(q)-conjugate to a radical p-chain of SUn(q).

For an irreducible character ρ of ZSU, the center of SUn(q), recall kd(P
SU
J , ρ) =

|Irrd(P SU
J , ρ)| is the number of irreducible characters of P SU

J lying over ρ (i.e. in the

p-block corresponding to ρ) with q-height d. The p-part of |SUn(q)| is equal to q(
n
2). As

we saw in the introduction DOC can be written:

∑
J⊆I

(−1)|J |kd(P
SU
J , ρ) = 0, for all ρ in Irr(ZSU) and nonnegative integers d <

(
n
2

)
. (1)

We now reformulate this statement using Clifford Theory. Let det be the determinant
map on Un(q). Then det(Un(q)) = Cq+1 and ker det = SUn(q). Moreover, restricting the
determinant map to parabolic subgroups PU

J we have det(PU
J ) = Cq+1 and ker det |PU

J
=

P SU
J . The group P SU

J is normal in PU
J and hence PU

J acts on the set Irr(P SU
J ) in the

natural way. For g ∈ PU
J and φ ∈ Irr(P SU

J ), g ·φ = gφ where gφ(x) = φ(gxg−1) as defined
in Section 2.4 of Chapter 2. The quotient group is cyclic

PU
J /P

SU
J
∼= Cq+1.

.
Let Irrd(P

SU
J , ρ, j) denote the irreducible characters φ ∈ Irrd(P

SU
J ) such that φ lies

over ρ, has q-height d, and the PU
J orbit of φ contains j characters. Then the following

implies 1:
For integers 0 ≤ d <

(
n
2

)
, 1 ≤ j and any ρ ∈ Irr(ZSU)∑
J⊆I

(−1)|J ||Irrd(P SU
J , ρ, j)| = 0. (2)

Rather than counting characters of P SU
J we count characters of PU

J . Let χ ∈ Irr(PU
J ).

By Clifford Theory, χ restricted to P SU
J is multiplicity free. The restrictions of two

irreducible characters χ and χ′ of PU
J to P SU

J have the same irreducible constituents
or are disjoint (Lemma 2.15). If φ ∈ Irrd(P

SU
J , ρ, j), then the PU

J -orbit of φ contains
j characters. For ρ ∈ Irr(ZSU), let Irrd(P

U
J , ρ,det, j) denote the subset of Irrd(P

U
J )

consisting of characters such that their restrictions to ker det belong to Irrd(P
SU
J , ρ, j).

A character φ ∈ Irrd(P
SU
J , ρ, j) extends to φ̃ ∈ Irr(TPU

J
(φ)). The induced charac-

ter (φ̃θ)P
U
J is irreducible where θ is the lift to TPU

J
(φ) of an irreducible character of

TPU
J

(φ)/P SU
J . Then ∣∣∣TPU

J
(φ)/P SU

J

∣∣∣ =
q + 1

j
since

∣∣∣PU
J /TPU

J
(φ)
∣∣∣ = j.
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Let kJ be the number of PU
J -orbit representatives in Irrd(P

SU
J , ρ, j). Then∣∣Irrd(P SU

J , ρ, j)
∣∣ = j · kJ∣∣Irrd(PU

J , ρ,det, j)
∣∣ = q+1

j · kJ .

Then ∑
J⊆I

(−1)|J ||Irrd(P SU
J , ρ, j)| =

∑
J⊆I

(−1)|J |j · kJ = j ·
∑
J⊆I

(−1)|J |kJ = 0

holds if and only if
∑

J⊆I(−1)|J |kJ = 0 if and only if

0 = q+1
j ·

∑
J⊆I

(−1)|J |kJ =
∑
J⊆I

(−1)|J | q+1
j · kJ =

∑
J⊆I

(−1)|J ||Irrd(PU
J , ρ,det, j)|.

Hence the following equation is equivalent to 2:
For integers 0 ≤ d <

(
n
2

)
, 1 ≤ j and any ρ ∈ Irr(ZSU):∑
J⊆I

(−1)|J ||Irrd(PU
J , ρ,det, j)| = 0. (3)

We will need the case where d =
(
n
2

)
. Recall from Chapter 2, the isomorphism of

(Fq2)∗ and Irr((Fq2)∗) so that aρ ∈ (Fq2)∗ corresponds to ρ ∈ Irr((Fq2)∗) under this
isomorphism. This induces an isomorphism of the cyclic subgroups ZU and ZSU with
Irr(ZU) and Irr(ZSU) respectively. Also recall from Chapter 2 the definition (2.4) of
β(µ, aρ).

For ρ′ ∈ Irr(ZU) let Irr(PU
J , ρ

′) be the set of characters χ ∈ Irr(PU
J ) such that χ lies

over ρ′. For J 6= ∅, Irr(PU
J , ρ

′) consists of a unique p-block corresponding to ρ′. However
if J = ∅ then PU

J = Un(q) and Irr(Un(q), ρ′) consists of two p-blocks one of zero defect
the other of full defect. Observe |Irr(n2)(Un(q), ρ′)| is one, the number of irreducible

characters of Un(q) of full q-height lying over ρ′. For ρ ∈ Irr(ZSU), let Irr(PU
J , ρ) denote

the set of irreducible characters of PU
J that lie over ρ′ ∈ Irr(ZU) where ρ′ lies over ρ.

Then for ρ ∈ Irr(ZSU) we have the following disjoint union

Irr(PU
J , ρ) =

⊔
ρ′∈Irr(ZU)
ρ′|

ZSU=ρ

Irr(PU
J , ρ

′).

We focus now on irreducible characters in Irr(ZU) and so switch the roles of ρ and ρ′.
The following implies 3:

For integers 0 ≤ d, 1 ≤ j and any ρ ∈ Irr(ZU),

∑
J⊆I

(−1)|J ||Irrd(PU
J , ρ,det, j)| =

{
β((n), aρ), if d =

(
n
2

)
and j=1;

0, otherwise.
(4)
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Given ρ ∈ Irr(ZU), let kd(P
U
J , ρ,det, j) denote the number of irreducible characters

χ ∈ Irr(PU
J ) such that χ lies over ρ, has q-height d and χ|ker det has j′ irreducible

constituents where j divides j′. Observe that

ker(det) = PU
J ∩ SUn(q) = P SU

J as mentioned.

Then
kd(P

U
J , ρ,det, j) =

∑
j|j′
|Irrd(PU

J , ρ,det, j′)|.

We may now drop the superscript notation and restrict our attention to irreducible
characters of parabolic subgroups of Un(q).

Taking into account that equation (4) implies equation (3) which implies equation
(2) which implies equation (1), we will have proved DOC for SUn(q) if we prove the
following theorem, which is the main result of this work.

Theorem 4.1 (Main) Let Z = Z(Un(q)) and {PJ |J ⊆ I} the set of standard parabolic
subgroups in Un(q). For any ρ ∈ Irr(Z), any positive integer j, and all nonnegative
integers d we have∑

J⊆I
(−1)|J |kd(PJ , ρ,det, j) =

{
β((n), aρ), if d =

(
n
2

)
and j=1;

0, otherwise.

In order to prove Theorem 4.1 we first break the left hand side into two sub-sums, the
second of which will reduce quite spectacularly. Let us differentiate between characters
χ counted by kd(PJ , ρ,det, j) for which kerχ contains UJ or not.

Definition 4.2 Let k0
d(PJ , UJ , ρ,det, j) be the number of characters counted by kd(PJ , ρ,det, j)

which contain UJ in their kernel and let k1
d(PJ , UJ , ρ,det, j) count those characters which

do not contain UJ in their kernel.

Then

∑
J⊆I

(−1)|J |kd(PJ , ρ,det, j) =
∑
J⊆I

(−1)|J |(k0
d(PJ , UJ , ρ,det, j) + k1

d(PJ , UJ , ρ,det, j))

=
∑
J⊆I

(−1)|J |k0
d(PJ , UJ , ρ,det, j) +

∑
J⊆I

(−1)|J |k1
d(PJ , UJ , ρ,det, j)

(5)
We will show the following:

Proposition 4.3 For any ρ ∈ Irr(Z), any positive integer j, and all nonnegative inte-
gers d ∑

J⊆I
(−1)|J |k0

d(PJ , UJ , ρ,det, j) =
∑
µ`n

n′(µ)=d
j|gcd(q+1,λ(µ))

β(µ, aρ) (6a)
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∑
J⊆I

(−1)|J |k1
d(PJ , UJ , ρ,det, j) = −

∑
µ`n

n′(µ)=d
j|gcd(q+1,λ(µ))

β(µ, aρ). (6b)

Clearly Proposition 4.3 implies Theorem 4.1.
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5 Auxiliaries for the Proof of the Main Theorem

This section is dedicated to proving equation (6a), the first half of Proposition 4.3. Our
first observation is that if χ is an irreducible character of PJ containing UJ in its kernel
then we may consider χ as an irreducible character of the Levi subgroup LJ of PJ . We
must be careful in applying the determinant map.

Let J = {j1, j2, . . . , js}. Then LJ can be written as the following direct product:

LJ = GLn1(q2)×GLn2(q2)× · · · ×GLns(q
2)×Un−2js(q)

where n1 = j1, ni = ji − ji−1 for 2 ≤ i ≤ s. Then since PJ = LJUJ for x ∈ PJ , x = lu
where l ∈ LJ and u ∈ UJ , so the determinant det(x) = det(lu) = det(l) det(u) = det(l)
since u is unipotent.

Recall our definition

Un(q) = {(ai,j) ∈ GLn(q2) | M = (ai,j)M(aqj,i)}

where M is the n× n matrix with ones down the reverse diagonal.
With this definition the fixed Borel subgroup of Un(q) is upper triangular. Thus for

x ∈ PJ we may write x as a block matrix:

x =



A1 ∗ . . . . . . ∗ ∗
0 A2 . . . . . . ∗ ∗
...

...
. . .

...
...

As
B

Ãs
...

...
. . .

...
...

0 0 . . . . . . Ã2 ∗
0 0 . . . . . . 0 Ã1


where Ak ∈ GLnk

(q2), B ∈ Uns+1(q), and if Ak = (ai,j), then Ãk = M(aqj,i)
−1M−1.

The determinant of x as an element in PJ which is embedded in Un(q) may be defined
in terms of the determinant map on the component factors of the Levi subgroup LJ in PJ .
We have det(x) = (det(A1) det(A2) . . . det(As))

1−q det(B) since det(Ãk) = det(Ak)
−q.

Thus k0
d(PJ , UJ , ρ,det, j) = kd(LJ , ρ,det |LJ

, j) where the determinant map det |LJ

is as indicated. Hence we are proving the equivalent statement:∑
J⊆I

(−1)|J |kd(LJ , ρ,det, j) =
∑
µ`n

n′(µ)=d
j|gcd(q+1,λ(µ))

β(µ, aρ). (7)

We make the following observation. Suppose LJ = G1 ×G2 where G1
∼= GLn1(q2) and

G2
∼= Un2(q) with 2n1 +n2 = n. As a subgroup embedded in Un(q) the determinant map
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on elements in LJ is defined in terms of the determinant map on the factors G1 and G2.
For x = g1g2 in LJ with gi ∈ Gi det(x) = det(g1)1−q det(g2). Recall det(g1)1−q is denoted
det1−q(g1) Then ker(det) = {(g1, g2) | det1−q(g1) det(g2) = 1}, det1−q(G1) = Cq+1, and
det(G2) = Cq+1.

If χi lies over ρi ∈ Irr(Cq+1), then χ = χ1χ2 lies over ρ = ρ1ρ2 since for z ∈ Z(Un(q))
χ(z) = χ1(1)χ2(1)ρ1(z)ρ2(z). Hence Lemma 2.18 implies that

kd(LJ , ρ,det, j) =
∑

2d1+d2=d
ρ1ρ2=ρ

k2d1(G1, ρ1,det1−q, j)kd2(G2, ρ2,det, j). (8)

We proceed by induction on n or equivalently by induction onm, where n = 2m or 2m+1.

5.1 Small Case

Let n = 1 so that m = 0 and I is empty. Then we have but one Levi subgroup, U1(q)
itself which is equal to its center. The determinant map is just the identity and hence
ker det is trivial so that the left hand side of equation (7) is

kd(U1(q), ρ,det, j) =

{
1, if d = 0 and j = 1;
0, otherwise.

Certainly this is equal to the right hand side of equation (7) since we have but one
partition of 1 and β((1), aρ) = 1
Let m = 1 so that n = 2 or n = 3. In either case we have but two Levi subgroups Un(q)
and the Borel Levi subgroup LI . First suppose that n = 2. Then LI = GL1(q2) and we
may apply 2.23 and 2.22 directly. The left hand side of 7 is

kd(U2(q), ρ,det, j)−kd(GL1(q2), ρ,det1−q, j) =


β((2), aρ)− 0, if d = 1 and j = 1;
β((12), aρ)− 0, if d = 0 and j = 2;

qβ(12, aρ)− β(1, aρ), if d = 0 and j = 1;
0, otherwise.

This is equal to the right hand side of equation (7).

We continue to assume that m = 1. Now suppose that n = 3. Then LI = GL1(q2)×
U1(q) so that 8 implies

kd(GL1(q2)×U1(q), ρ,det, j) =
∑

2d1+d2=d
ρ1ρ2=ρ

k2d1(GL1(q2), ρ1,det1−q, j)kd2(U1(q), ρ2,det, j)
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which is nonzero only for d = 0. Then the left hand side of equation (7) is

kd(U3(q), ρ,det, j)−kd(GL1(q2)×U1(q), ρ,det, j)

=


β((3), aρ)− 0, if d = 3 and j = 1;
β((2, 1), aρ)− 0, if d = 1 and j = 1;
β(13, aρ)− 0, if d = 0 and j = 3;
q2β(13, aρ)− (q − 1)(q + 1), if d = 0 and j = 1;
0, otherwise.

This is equal to the right hand side of equation (7).

5.2 Inductive Case

We assume that equation (7) holds for all dimensions strictly less than n. Our first
observation is that for fixed J with minimal element j1 = k we may write LJ = GLk(q

2)×
LJ ′ where LJ ′ is a levi subgroup in Un−2k(q) and J ′ = {ji − k | 2 ≤ i ≤ s}. Note
|J ′| = |J | − 1. We will use superscripts to indicate the dimension of the ambient group
when necessary. So for example LJ ′ will be written as Ln−2k

J ′ . For such a J we have

kd(GLk(q
2)×Ln−2k

J ′ , ρ,det, j) =
∑

2d1+d2=d
ρ1ρ2=ρ

k2d1(GLk(q
2), ρ1,det1−q, j)kd2(Ln−2k

J ′ , ρ2, det, j).

We remark that k2d1(GLk(q
2), ρ1, det1−q, j) = 0 for k not divisible by j. We could

eliminate from our sum all J whose smallest members are not all multiples of j. This
isn’t necessary though since the contribution is just zero. In fact we may discard all Js
not contained in {j, 2j, 3j, . . .} ⊆ I but again this isn’t necessary for our induction.

Definition 5.1 Fix k ≥ 1 and let Jk be the collection of all J ⊆ I with minimal member
k.
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We have∑
J∈Jk

(−1)|J |kd(LJ , ρ,det, j) =
∑

J ′⊆Im−k

(−1)|J |kd(GLk(q
2)× Ln−2k

J ′ , ρ,det, j)

=
∑

J ′⊆Im−k

∑
2d1+d2=d
ρ1ρ2=ρ

(−1)|J
′|+1k2d1(GLk(q

2), ρ1,det1−q, j)kd2(Ln−2k
J ′ , ρ2, det, j)

= −
∑

2d1+d2=d
ρ1ρ2=ρ

k2d1(GLk(q
2), ρ1,

1−q
det, j)

∑
J⊆Im−k

(−1)|J |kd2(Ln−2k
J , ρ2,det, j)


= −

∑
2d1+d2=d
ρ1ρ2=ρ

( ∑
µ1`k

n′(µ1)=d1
j| gcd(q+1,λ(µ1))

q2(l(µ1)/j−δ(µ1))β(µ1, aρ1)×
∑

µ2`(n−2k)
n′(µ2)=d2

j| gcd(q+1,λ(µ2))

β(µ2, aρ2)

)

= −
∑

2d1+d2=d
ρ1ρ2=ρ

∑
(µ1,µ2)
µ1`k

µ2`(n−2k)
n′(µ1)=d1
n′(µ2)=d2

j| gcd(q+1,λ(µ1),λ(µ2))

q2(l(µ1)/j−δ(µ1))β(µ1, aρ1)β(µ2, aρ2)

(9)
by our inductive assumption, for indeed n− 2k is strictly less than n.

Summing over all possible values for k and switching the order of summation we have

m∑
k=1

∑
J∈Jk

(−1)|J |kd(LJ , ρ,det, j)

= −
m∑
k=1

∑
2d1+d2=d
ρ1ρ2=ρ

∑
(µ1,µ2)
µ1`k

µ2`(n−2k)
n′(µ1)=d1
n′(µ2)=d2

j| gcd(q+1,λ(µ1),λ(µ2))

q2(l(µ1)/j−δ(µ1))β(µ1, aρ1)β(µ2, aρ2)

= −
∑
µ`n

n′(µ)=d

∑
(µ1,µ2)

µ=2µ1∪µ2
|µ1|6=0

j| gcd(q+1,λ(µ1),λ(µ2))

∑
ρ1,ρ2
ρ1ρ2=ρ

q2(l(µ1)/j−δ(µ1))β(µ1, aρ1)β(µ2, aρ2)

= −
∑
µ`n

n′(µ)=d

∑
(µ1,µ2)

µ=2µ1∪µ2
|µ1|6=0

j|gcd(q+1,λ(µ1),λ(µ2))

q2(l(µ1)/j−δ(µ1))(q − 1)δ(µ1)(q + 1)c(µ1,µ2)β(µ, aρ).

(10)
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Now we remind the reader that from Corollary 2.11 we have the following for each µ ` n∑
(µ1,µ2)

µ=2µ1∪µ2
j| gcd(λ(µ1),λ(µ2))

q2(l(µ1)/j−δ(µ1))(q − 1)δ(µ1)(q + 1)c(µ1,µ2) = ql(µ)/j−δ(µ). (11)

Notice that this sum includes the pair (µ1, µ2) = (∅, µ) and that for this particular pair

q2(l(µ1)/j−δ(µ1))(q − 1)δ(µ1)(q + 1)c(µ1,µ2) = 1.

We are now ready to prove equation (7):∑
J⊆I

(−1)|J |kd(LJ , ρ,det, j) = kd(Un(q), ρ,det, j) +
∑
∅6=J⊆I

(−1)|J |kd(LJ , ρ,det, j)

= kd(Un(q), ρ,det, j) +
m∑
k=1

∑
J∈Jk

(−1)|J |kd(LJ , ρ,det, j)

=
∑
µ`n

n′(µ)=d
j| gcd(q+1,λ(µ))

ql(µ)/j−δ(µ)β(µ, aρ)

−

( ∑
µ`n

n′(µ)=d
j| gcd(q+1,λ(µ))

ql(µ)/j−δ(µ)β(µ, aρ)−
∑
µ`n

n′(µ)=d
j| gcd(q+1,λ(µ))

β(µ, aρ)

)

=
∑
µ`n

n′(µ)=d
j| gcd(q+1,λ(µ))

β(µ, aρ).

(12)

And we are done.
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